Adaptive data-aware utility-based scheduling in resource-constrained systems

نویسندگان

  • David Vengerov
  • Lykomidis Mastroleon
  • Declan Murphy
  • Nicholas Bambos
چکیده

This paper addresses the problem of dynamic scheduling of data-intensive multiprocessor jobs. Each job requires some number of CPUs and some amount of data that needs to be downloaded into a local storage space before starting the job. The completion of each job brings some benefit (utility) to the system, and the goal is to find the optimal scheduling policy that maximizes the average utility per unit of time obtained from all completed jobs. A co-evolutionary solution methodology is proposed, where the utility-based policies for managing local storage and for scheduling jobs onto the available CPUs mutually affect each other’s environments, with both policies being adaptively tuned using the Reinforcement Learning methodology. Our simulation results demonstrate the feasibility of this approach and show that it performs better than the best heuristic scheduling policy we could find for this domain. email addresses: [email protected] [email protected] [email protected] [email protected] © 2007 Sun Microsystems, Inc. All rights reserved. The SML Technical Report Series is published by Sun Microsystems Laboratories, of Sun Microsystems, Inc. Printed in U.S.A. Unlimited copying without fee is permitted provided that the copies are not made nor distributed for direct commercial advantage, and credit to the source is given. Otherwise, no part of this work covered by copyright hereon may be reproduced in any form or by any means graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an information retrieval system, without the prior written permission of the copyright owner. TRADEMARKS Sun, Sun Microsystems, the Sun logo, Java, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. For information regarding the SML Technical Report Series, contact Jeanie Treichel, Editor-in-Chief .All technical reports are available online on our website, http://research.sun.com/techrep/. Adaptive Data-Aware Utility-Based Scheduling in Resource-Constrained Systems ? David Vengerov a,∗ Lykomidis Mastroleon b Declan Murphy a Nick Bambos b aSun Microsystems Laboratories, Menlo Park, CA 94025, USA bDepartment of Management Science and Engineering, Stanford University, Stanford, CA 94305, USA

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Utility-Based Scheduling in Resource-Constrained Systems

This paper addresses the problem of scheduling jobs in soft real-time systems, where the utility of completing each job decreases over time. We present a utility-based framework for making repeated scheduling decisions based on dynamically observed information about unscheduled jobs and system’s resources. This framework generalizes the standard scheduling problem to a resource-constrained envi...

متن کامل

Green Energy-aware task scheduling using the DVFS technique in Cloud Computing

Nowdays, energy consumption as a critical issue in distributed computing systems with high performance has become so green computing tries to energy consumption, carbon footprint and CO2 emissions in high performance computing systems (HPCs) such as clusters, Grid and Cloud that a large number of parallel. Reducing energy consumption for high end computing can bring various benefits such as red...

متن کامل

A multi-objective resource-constrained project scheduling problem with time lags and fuzzy activity durations

The resource-constrained project scheduling problem is to find a schedule that minimizes the project duration subject to precedence relations and resource constraints. To further account for economic aspects of the project, one may add an objective of cash nature to the problem. In addition, dynamic nature and variations in real world are known to introduce uncertainties into data. Therefore, t...

متن کامل

The preemptive resource-constrained project scheduling problem subject to due dates and preemption penalties: An integer programming approach

Extensive research has been devoted to resource constrained project scheduling problem. However, little attention has been paid to problems where a certain time penalty must be incurred if activity preemption is allowed. In this paper, we consider the project scheduling problem of minimizing the total cost subject to resource constraints, earliness-tardiness penalties and preemption penalties, ...

متن کامل

A Multi-Mode Resource-Constrained Optimization of Time-Cost Trade-off Problems in Project Scheduling Using a Genetic Algorithm

In this paper, we present a genetic algorithm (GA) for optimization of a multi-mode resource constrained time cost trade off (MRCTCT) problem. The proposed GA, each activity has several operational modes and each mode identifies a possible executive time and cost of the activity. Beyond earlier studies on time-cost trade-off problem, in MRCTCT problem, resource requirements of each execution mo...

متن کامل

A Preemptive multimode resource constrained project scheduling model with cash flows

Resource constrained project scheduling problem is one of the most important issues in project planning and management. The objective function of this problem is to minimize the completion time of a project. When there is budget constraint or high risk for investment, using the criteria such as cash flows is so important. The development of computer systems and processors makes it possible to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Parallel Distrib. Comput.

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2010